Deep TAMER: Interactive Agent Shaping in High-Dimensional State Spaces

نویسندگان

  • Garrett Warnell
  • Nicholas R. Waytowich
  • Vernon Lawhern
  • Peter Stone
چکیده

While recent advances in deep reinforcement learning have allowed autonomous learning agents to succeed at a variety of complex tasks, existing algorithms generally require a lot of training data. One way to increase the speed at which agents are able to learn to perform tasks is by leveraging the input of human trainers. Although such input can take many forms, real-time, scalar-valued feedback is especially useful in situations where it proves difficult or impossible for humans to provide expert demonstrations. Previous approaches have shown the usefulness of human input provided in this fashion (e.g., the TAMER framework), but they have thus far not considered high-dimensional state spaces or employed the use of deep learning. In this paper, we do both: we propose Deep TAMER, an extension of the TAMER framework that leverages the representational power of deep neural networks in order to learn complex tasks in just a short amount of time with a human trainer. We demonstrate Deep TAMER’s success by using it and just 15 minutes of human-provided feedback to train an agent that performs better than humans on the Atari game of BOWLING a task that has proven difficult for even state-of-the-art reinforcement learning methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Training a Tetris agent via interactive shaping: a demonstration of the TAMER framework

As computational learning agents continue to improve their ability to learn sequential decision-making tasks, a central but largely unfulfilled goal is to deploy these agents in real-world domains in which they interact with humans and make decisions that affect our lives. People will want such interactive agents to be able to perform tasks for which the agent’s original developers could not pr...

متن کامل

Data-Efficient Learning of Feedback Policies from Image Pixels using Deep Dynamical Models

Data-efficient reinforcement learning (RL) in continuous state-action spaces using very high-dimensional observations remains a key challenge in developing fully autonomous systems. We consider a particularly important instance of this challenge, the pixels-to-torques problem, where an RL agent learns a closed-loop control policy (“torques”) from pixel information only. We introduce a data-effi...

متن کامل

From Pixels to Torques: Policy Learning with Deep Dynamical Models

Data-efficient learning in continuous state-action spaces using very high-dimensional observations remains a key challenge in developing fully autonomous systems. In this paper, we consider one instance of this challenge, the pixels to torques problem, where an agent must learn a closed-loop control policy from pixel information only. We introduce a data-efficient, model-based reinforcement lea...

متن کامل

Traffic Light Control Using Deep Policy-Gradient and Value-Function Based Reinforcement Learning

Recent advances in combining deep neural network architectures with reinforcement learning techniques have shown promising potential results in solving complex control problems with high dimensional state and action spaces. Inspired by these successes, in this paper, we build two kinds of reinforcement learning algorithms: deep policy-gradient and value-function based agents which can predict t...

متن کامل

Pattern-oriented Design Agent (PDA): Building the interactive agent model by using design patterns

Recently, the agent-based model have been widely applied in economy, ecology, environmental planning and population forecast. Pedestrian’s movements in urban environments are main issues for urban designers in urban spatial planning and analysis. However, the varied outcomes of crowds due to interactions between individuals and environments require further exploration. The planners who face the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.10163  شماره 

صفحات  -

تاریخ انتشار 2017